

Rapid Response®

Saliva Drug Test Stick (Oral Fluid)

Product Insert

Instruction Sheet for testing of any combination of the following drugs:

AMP/MET/COC/OPI/MOP/THC/PCP/MTD/MDMA/BZO/OXY/COT/K2/KET/BAR/BUP/TML/ 6-MAM/FYL/CFYL/MDPV/α-PVP/LSD/ALC

A rapid test for the simultaneous, qualitative detection of multiple drugs or drug metabolites and alcohol in human oral fluid. For healthcare professionals including professionals at point of care sites. Immunoassay for *in vitro* diagnostic use only.

Intended Use

The Rapid Response® Saliva Drug Test Stick is a lateral flow chromatographic immunoassay for the qualitative detection of multiple drugs or drug metabolites in human oral fluid at the following cut-off concentrations:

Test	Calibrator	Cut-off (ng/mL)
Amphetamine (AMP)	d-Amphetamine	50/40/25/20
Methamphetamine (MET)	d-Methamphetamine	50/30/25
Marijuana (THC)	11-nor- Δ^9 -THC-9 COOH	50/40/30/25/20/15/12
Phencyclidine (PCP)	Phencyclidine	10
Cocaine (COC)	Benzoylgeconine	50/40/30/20
Opiates/Morphine (OPI/MOP)	Morphine	50/40/25/20/10
Methadone (MTD)	Methadone	50/30
Methylenedioxymethamphetamine (MDMA)	d,l-Methylenedioxymethamphetamine	75/50
Oxycodone (OXY)	Oxycodone	50/40/20
Cotinine (COT)	Cotinine	20
Benzodiazepines (BZO)	Oxazepam	50/30/20/10
Synthetic Marijuana (K2)	JWH-018, JWH-073	25
Ketamine (KET)	Ketamine	150/100/50
Barbiturates (BAR)	Secobarbital	50
Buprenorphine (BUP)	Buprenorphine	10/5
Tramadol (TML)	Tramadol	30
6-Monoacetylmorphine (6-MAM)	6-Monoacetylmorphine	10
Fentanyl (FYL)	Fentanyl	50/20/10
Carfentanyl (CFYL)	Carfentanyl	50
3, 4-methylenedioxypyrovalerone (MDPV)	3, 4-methylenedioxypyrovalerone	300
alpha-Pyrrolidinovalerophenone (α-PVP)	alpha-Pyrrolidinovalerophenone	300
Lysergic Acid Diethylamide (LSD)	Lysergic Acid Diethylamide	10
Test	Calibrator	Cut-off
Alcohol(ALC)	Alcohol	0.02%

This assay provides only a preliminary test result. A more specific alternate chemical method must be used in order to obtain a confirmed analytical result. Gas Chromatography/Mass Spectrometry (GC/MS) is the preferred confirmatory methods. Professional judgment should be applied to any drug of abuse test result, particularly when preliminary positive results are indicated.

WARNING: This testing device is not licensed for drug checking prior to consumption. When used for this purpose, there is a risk of inaccurate results.

Summary

The Rapid Response® Saliva Drug Test Stick is a rapid, oral fluid screening test that can be performed without the use of an instrument. The test utilizes monoclonal antibodies to selectively detect elevated levels of specific drugs in human oral fluid.

Amphetamine (AMP)

Amphetamine is a sympathomimetic amine with therapeutic indications. The drug is often self-administered by nasal inhalation or oral ingestion. Depending on the route of administration, amphetamine can be detected in oral fluid as early as 5-10 minutes following use.¹ Amphetamine can be detected in oral fluid for up to 72 hours after use.¹

Methamphetamine (MET)

Methamphetamine is a potent stimulant chemically related to amphetamine but with greater CNS stimulation properties. The drug is often self-administered by nasal inhalation, smoking or oral ingestion. Depending on the route of administration, methamphetamine can be detected in oral fluid as early as 5-10 minutes following use.¹ Methamphetamine can be detected in oral fluid for up to 72 hours after use.¹

Cocaine (COC)

Cocaine is a potent central nervous system (CNS) stimulant and a local anesthetic derived from the coca plant (erythroxylum coca). The drug is often self-administered by nasal inhalation, intravenous injection and free-base smoking. Depending on the route of administration, cocaine and metabolites benzoylgeconine and egeconine methyl ester can be detected in oral fluid as early as 5-10 minutes following use.¹ Cocaine and benzoylgeconine can be detected in oral fluid for up to 24 hours after use.¹

Opiates (OPI/MOP)

The drug class opiates refers to any drug that is derived from the opium poppy, including naturally occurring compounds such as morphine and codeine and semi-synthetic drugs such as heroin. Opiates act to control pain by depressing the central nervous system. The drugs demonstrate addictive properties when used for sustained periods of time; symptoms of withdrawal may include sweating, shaking, nausea and irritability. Opiates can be taken orally or by injection routes including intravenous, intramuscular and subcutaneous; illegal users may also take the intravenously or by nasal inhalation. Using an immunoassay cutoff level of 40ng/ml, codeine can be detected in the oral fluid within 1 hour following a single oral dose and can remain detectable for 7-21 hours after the dose.¹ Heroin metabolite 6-monoacetylmorphine (6-MAM) is found more prevalently in excreted unmetabolized, and is also the major metabolic product of codeine and heroin.²

Marijuana (THC)

11-nor- Δ^9 -tetrahydrocannabinol-9-carboxylic acid (Δ^9 -THC-COOH), the metabolite of THC (Δ^9 -tetrahydrocannabinol), is detectable in oral fluid shortly after use. The detection of the drug is thought to be primarily due to the direct exposure of the drug to the mouth (oral and smoking administrations) and the subsequent sequestering of the drug in the buccal cavity.³ Historical studies have shown a window of detection for THC in oral fluid of up to 14 hours after drug use.³

Phencyclidine (PCP)

Phencyclidine, the hallucinogen commonly referred to as Angel Dust, can be detected in oral fluid as a result of the exchange of the drug between the circulatory system and the oral cavity. In a paired serum and oral fluid sample collection of 100 patients in an Emergency Department, PCP was detected in the oral fluid of 79 patients at levels as low as 2ng/mL

and as high as 600ng/mL.⁴

Methadone (MTD)

Methadone is a narcotic analgesic prescribed for the management of moderate to severe pain and for the treatment of opiate dependence (heroin, Vicodin, Percocet, morphine).

Methadone is a long acting pain reliever producing effects that last from twelve to forty-eight hours. Ideally, methadone frees the client from the pressures of obtaining illegal heroin, from the dangers of injection, and from the emotional roller coaster that most opiates produce. Methadone, if taken for long periods and at large doses, can lead to a very long withdrawal period. The withdrawals from methadone are more prolonged and troublesome than those provoked by heroin cessation, yet the substitution and phased removal of methadone is an acceptable method of detoxification for patients and therapists.¹

Methylenedioxymethamphetamine (MDMA)

Methylenedioxymethamphetamine (ecstasy) is a designer drug first synthesized in 1914 by a German drug company for the treatment of obesity. Those who take the drug frequently report adverse effects, such as increased muscle tension and sweating. MDMA is not clearly a stimulant, although it has, in common with amphetamine drugs, a capacity to increase blood pressure and heart rate. MDMA does produce some perceptual changes in the form of increased sensitivity to light, difficulty in focusing, and blurred vision in some users. Its mechanism of action is thought to be via release of the neurotransmitter serotonin. MDMA may also release dopamine, although the general opinion is that this is a secondary effect of the drug (Nichols and Oberlander, 1990). The most pervasive effect of MDMA, occurring in virtually all people who took a reasonable dose of the drug, was to produce a clenching of the jaws.¹

Oxycodone (OXY)

Oxycodone is a semi-synthetic opioid with a structural similarity to codeine. The drug is manufactured by modifying thebaine, an alkaloid found in the opium poppy. Oxycodone, like all opiate agonists, provides pain relief by acting on opioid receptors in the spinal cord, brain, and possibly directly in the affected tissues. Oxycodone is prescribed for the relief of moderate to high pain under the well-known pharmaceutical trade names of OxyContin®, Tylox®, Percodan® and Percocet®. While Tylox®, Percodan® and Percocet® contain only small doses of oxycodone hydrochloride combined with other analgesics such as acetaminophen or aspirin, OxyContin consists solely of oxycodone hydrochloride in a time-release form. Oxycodone is known to metabolize by demethylation into oxymorphone and noroxycodone.

Cotinine (COT)

Cotinine is the first-stage metabolite of nicotine, a toxic alkaloid that produces stimulation of the autonomic ganglia and central nervous system when in humans. Nicotine is a drug to which virtually every member of a tobacco-smoking society is exposed whether through direct contact or second-hand inhalation. In addition to tobacco, nicotine is also commercially available as the active ingredient in smoking replacement therapies such as nicotine gum, transdermal patches and nasal sprays. Although nicotine is excreted in oral fluid, the relatively short half-life of the drug makes it an unreliable marker for tobacco use. Cotinine, however, demonstrates a substantially longer half-life than nicotine bears a high correlation with plasma cotinine levels and has been found to be the best marker for smoking status compared with oral fluid nicotine measurement, breath carbon monoxide testing and plasma thiocyanate testing. The window of detection for cotinine in oral fluid test is expected to be up to 1-2 days after nicotine use.¹

Benzodiazepines (BZO)

Benzodiazepines are medications that are frequently prescribed for the symptomatic treatment of anxiety and sleep disorders. They produce

their effects via specific receptors involving a neurochemical called gamma aminobutyric acid (GABA). Because they are safer and more effective, Benzodiazepines have replaced Barbiturates in the treatment of both anxiety and insomnia. Benzodiazepines are also used as sedatives before some surgical and medical procedures, and for the treatment of seizure disorders and alcohol withdrawal. Risk of physical dependence increases if Benzodiazepines are taken regularly (e.g., daily) for more than a few months, especially at higher than normal doses. Stopping abruptly can bring on such symptoms as trouble sleeping, gastrointestinal upset, feeling unwell, loss of appetite, sweating, trembling, weakness, anxiety and changes in perception.¹

Synthetic Marijuana (K2)

Synthetic Marijuana or K2 is a psychoactive herbal and chemical product that, when consumed, mimics the effects of Marijuana. It is best known by the brand names K2 and Spice, both of which have largely become genericized trademarks used to refer to any synthetic Marijuana product. The studies suggest that synthetic marijuana intoxication is associated with acute psychosis, worsening of previously stable psychotic disorders, and also may have the ability to trigger a chronic (long-term) psychotic disorder among vulnerable individuals such as those with a family history of mental illness.⁶

Elevated levels of oral fluid metabolites are found within hours of exposure and remain detectable window up to 24-48 hours after smoking (depending on usage/dosage).

Ketamine (KET)

Ketamine is a dissociative anesthetic developed in 1963 to replace PCP (Phencyclidine). While Ketamine is still used in human anesthesia and veterinary medicine, it is becoming increasingly abused as a street drug. Ketamine is molecularly similar to PCP and thus creates similar effects including numbness, loss of coordination, sense of invulnerability, muscle rigidity, aggressive / violent behavior, slurred or blocked speech, exaggerated sense of strength, and a blank stare. There is depression of respiratory function but not of the central nervous system, and cardiovascular function is maintained.⁷ The effects of Ketamine generally last 4-6 hours following use.

Barbiturates (BAR)

Barbiturates are CNS depressants. They are used therapeutically as sedatives, hypnotics, and anticonvulsants barbiturates are almost always taken orally as capsules or tablets. The effects resemble those of intoxication with alcohol. Chronic use of barbiturates leads to tolerance and physical dependence.⁸

Short-acting barbiturates taken at 400 mg/day for 2-3 months can produce a clinically significant degree of physical dependence. Withdrawal symptoms experienced during periods of drug abstinence can be severe enough to cause death.

The approximate detection time limits for barbiturates are:

Short acting (e.g. Secobarbital)	100 mg PO (oral)	4.5
Long acting (e.g. Phenobarbital)	400 mg PO (oral)	7 days ²

Buprenorphine (BUP)

Buprenorphine is a potent analgesic often used in the treatment of opioid addiction. The drug is sold under the trade names Subutex™, Buprenex™, Temgesic™ and Suboxone™, which contain Buprenorphine HCl alone or in combination with Naloxone HCl. Therapeutically, Buprenorphine is used as a substitution treatment for opioid addicts. Substitution treatment is a form of medical care offered to opiate addicts (primarily heroin addicts) based on a similar or identical substance to the drug normally used. In substitution therapy, Buprenorphine is as effective as Methadone but demonstrates a lower level of physical dependence. The elimination half-life of buprenorphine is 20-73 hours (mean 37). Substantial abuse of Buprenorphine has also been reported in many countries where various forms of the drug are available. The drug has

been diverted from legitimate channels through theft, doctor shopping, and fraudulent prescriptions, and been abused via intravenous, sublingual, intranasal and inhalation routes

Tramadol (TML)

Tramadol (TML) is a quasi-narcotic analgesic used in the treatment of moderate to severe pain. It is a synthetic analog of codeine, but has a low binding affinity to the mu-opioid receptors. Large doses of tramadol can develop tolerance and physiological dependency and lead to its abuse. Tramadol is extensively metabolized after oral administration. Approximately 30% of the dose is excreted in oral fluid as unchanged drug, whereas 60% is excreted as metabolites. The major pathways appear to be N- and O- demethylation, glucuronidation or sulfation in the liver.

6-Monoacetylmorphine (6-MAM)

6-Monoacetylmorphine (6-MAM) or 6-acetylmorphine (6-MAM) is one of three active metabolites of heroin (diacetylmorphine), the others being morphine and the much less active 3-monoacetylmorphine (3-MAM). 6-MAM is rapidly created from heroin in the body, and then is either metabolized into morphine or excreted in the oral fluid. 6-MAM remains in the oral fluid for no more than 24 hours. So a oral fluid specimen must be collected soon after the last heroin use, but the presence of 6-MAM guarantees that heroin was in fact used as recently as within the last day. 6-MAM is naturally found in the brain,⁵ but in such small quantities that detection of this compound in oral fluid virtually guarantees that heroin has recently been consumed.

Fentanyl (FYL)

Fentanyl, belongs to powerful narcotics analgesics, and is a special opiates receptor stimulant. Fentanyl is one of the varieties that been listed in management of United Nations "Single Convention of narcotic drug in 1961". Among the opiates agents that under international control, fentanyl is one of the most commonly used to cure moderate to severe pain.⁵ After continuous injection of fentanyl, the sufferer will have the performance of protracted opioid abstinence syndrome, such as ataxia and irritability etc,^{6,7} which presents the addiction after taking fentanyl in a long time. Compared with drug addicts of amphetamine, drug addicts who take fentanyl mainly have got the possibility of higher infection rate of HIV, more dangerous injection behavior and more lifelong medication overdose.⁸

Carfentanyl (CFYL)

Carfentanyl is an analog of the synthetic opioid analgesic fentanyl. It is 10,000 times more potent than morphine, making it among the most potent commercially used opioids. Carfentanyl was first synthesized in 1974.⁹ It is marketed under the trade name Wildnil as a general anaesthetic agent for large animals.¹⁰ Side effects of carfentanyl are similar to those of fentanyl, which include itching, nausea and respiratory depression, which can be life-threatening.¹¹ Carfentanyl is classified as Schedule II under the Controlled Substances Act in the United States with a DEA ACSCN of 9743.

3, 4-methylenedioxypyrovalerone (MDPV)

3,4-methylenedioxypyrovalerone (MDPV) is a psychoactive recreational drug with stimulant properties which acts as a norepinephrine-dopamine reuptake inhibitor (NDRI). It was first developed in the 1960s by a team at Boehringer Ingelheim.¹¹ MDPV remained an obscure stimulant until around 2004 when it was reportedly sold as a designer drug. Products labeled as bath salts containing MDPV were previously sold as recreational drugs in gas stations and convenience stores in the United States, similar to the marketing for Spice and K2 as incense. MDPV is the 3,4-methylenedioxyl ring-substituted analog of the compound pyrovalerone, developed in the 1960s, which has been used for the treatment of chronic fatigue and as an anorectic, but caused problems of abuse and dependence. However, despite its structural

similarity, the effects of MDPV bear little resemblance to other methylenedioxyl phenylalkylamine derivatives such as 3,4-methylenedioxyl-N-methylamphetamine (MDMA), instead producing primarily stimulant effects with only mild entactogenic qualities.¹²

MDPV undergoes CYP450 2D6, 2C19, 1A2, and COMT phase 1 metabolism (liver) into methylcatechol and pyrrolidine, which in turn are glucuronidated (uridine 5'-diphospho-glucuronosyl-transferase) allowing it to be excreted by the kidneys, with only a small fraction of the metabolites being excreted in the stools.¹³ No free pyrrolidine will be detected in the oral fluid.

alpha-Pyrrolidinovalerophenone (α-PVP)

alpha-Pyrrolidinovalerophenone (also known as α-PVP, A-PVP, alpha-PVP, and Flakka) is a synthetic stimulant substance of the cathinone and pyrrolidine chemical classes. α-PVP may be quantified in blood, plasma or urine to confirm a diagnosis of poisoning in hospitalized patients or to provide evidence in a medicolegal death investigation.¹⁴ It generally comes in the form of either a crystalline powder or crystallized shards which users can ingest to produce powerful but short-lived euphoric stimulant effects which are comparable to those of methamphetamine and cocaine when insufflated or vaporized. α-PVP has been reported to be the cause, or a significant contributory cause of death in suicides and overdoses caused by combinations of drugs.¹⁵ It has also been linked to at least one death where it was combined with pentedrone and caused heart failure.

Lysergic Acid Diethylamide (LSD)

Lysergic acid diethylamide (LSD) is a white powder or a clear, colourless liquid. LSD is manufactured from lysergic acid which occurs naturally in the ergot fungus that grows on wheat and rye. It is a Schedule I controlled substance, available in liquid, powder, tablet (microdots), and capsule form. LSD is recreationally used as a hallucinogen for its ability to alter human perception and mood. LSD is primarily used by oral administration, but can be inhaled, injected, and transdermally applied. LSD is a non-selective 5-HT agonist, may exert its hallucinogenic effect by interacting with 5-HT 2A receptors as a partial agonist and modulating the NMDA receptor-mediated sensory, perceptual, affective and cognitive processes. LSD mimics 5-HT at 5-HT 1A receptors, producing a marked slowing of the firing rate of serotonergic neurons. LSD has a plasma half-life of 2.5-4 hours. Metabolites of LSD include N-desmethyl-LSD, hydroxy-LSD, 2-oxo-LSD and 2-oxo-3-hydroxy-LSD. These metabolites are all inactive.

Alcohol (ALC)

Two-thirds of all adults drink alcohol.¹⁶ The blood alcohol concentration at which a person becomes impaired is variable dependent upon the individual. Each individual has specific parameters that affect the level of impairment such as size, weight, eating habits and alcohol tolerance. Inappropriate consumption of alcohol can be a contributing factor to many accidents, injuries, and medical conditions.¹⁷

Assay Principle

The Rapid Response® Saliva Drug Test Stick is an immunoassay based on the principle of competitive binding. Drugs that may be present in the oral fluid specimen compete against their respective drug conjugate for binding sites on their specific antibody.

During testing, a portion of the oral fluid specimen migrates upward by capillary action. A drug, if present in the oral fluid specimen below its cut-off concentration, will not saturate the binding sites of its specific antibody. The antibody will then react with the drug-protein conjugate and a visible coloured line will show up in the test line region of the specific drug strip. The presence of drug above the cut-off concentration in the oral fluid specimen will saturate all the binding sites of the antibody. Therefore, the coloured line will not form in the test line region.

A drug-positive oral fluid specimen will not generate a coloured line in the specific test line region of the strip because of drug competition, while a drug-negative oral fluid specimen will generate a line in the test line region because of the absence of drug competition.

To serve as a procedural control, a coloured line will always appear at the control line region, indicating that proper volume of specimen has been added and membrane wicking has occurred.

Alcohol Principle

The Oral Fluid Alcohol Rapid Test consists of a plastic strip with a reaction pad attached at the tip. On contact with solutions of alcohol, the reaction pad will rapidly turn colours depending on the concentration of alcohol present. The pad employs a solid-phase chemistry which uses a highly specific enzyme reaction.

Reagents

Each test contains membrane strips coated with drug-protein conjugates (purified bovine albumin) on the test line, a goat polyclonal antibody against gold-protein conjugate at the control line, and a dye pad which contains colloidal gold particles coated with mouse monoclonal antibody specific to corresponding drug.

Alcohol Reagents

Tetramethylbenzidine/Alcohol Oxidase (EC 1.1.3.13)/Peroxidase (EC 1.11.1.7)/ Other additives

Precautions

- For healthcare professional and clinical *in vitro* diagnostic use only.
- Do not use after the expiration date.
- The test should remain in the sealed pouch until use.
- Oral fluid is not classified as biological hazard unless derived from a dental procedure.
- The used Device should be discarded according to local regulations.

Alcohol Precautions

Test materials that have been exposed to oral fluid should be treated as potentially infectious. Do not use the Oral fluid Alcohol Rapid Test after the expiration date marked on the foil package.

Materials

Materials provided

- Test devices
- ALC colour chart (when applicable)
- Product insert

Materials required but not provided

- Timer

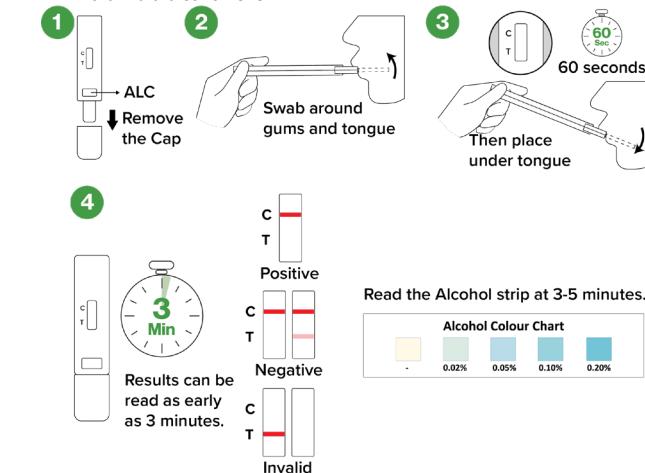
Storage and Stability

Store as packaged in the sealed pouch at 2-30°C (35.6-86°F). The test is stable through the expiration date printed on the sealed pouch. The test Device must remain in the sealed pouch until use. **DO NOT FREEZE.** Do not use beyond the expiration date.

Alcohol Storage and stability

The Alcohol Rapid Test is to be stored at 2-30°C (35.6-86°F) in its sealed foil package. If storage temperatures exceed 30°C (86°F), the test

performance may degrade. If the product is refrigerated, the Oral fluid Alcohol Rapid Test must be brought to room temperature prior to opening the pouch.


Collection and Storage of Specimens

- The oral fluid specimen should be collected using the device with the kit. Follow the detailed Directions for Use below. No other collection device should be used with this assay. Oral fluid collected at any time of the day may be used.

Directions For Use

Allow the test device, specimen and/or controls to reach room temperature (59-86°F; 15-30°C) prior to testing. Instruct the donor to not place anything in the mouth including food, drink, gum or tobacco products for at least 10 minutes prior to collection.

- Bring the pouch to room temperature before opening it. Remove the test from the sealed pouch and use it within one hour.
- Take off the Device cap and collect oral fluid specimen as follows.
 - IMPORTANT:** Place the absorbent wick against the upper, lower jaws and roots to enrich the oral fluid. Insert the sponge end into the mouth, actively swab around the gums on both sides of the mouth (10-15 times) to assist saturation.
 - Put the absorbent wick under the tongue to collect oral fluid until the flow appear in the test windows (approximately 60 seconds) and then take out the device and start a timer.
 - If no flow appeared repeat the procedures in steps above until the flow appear. If no flow appeared after triplicate of steps above, discard the device, review procedures with the donor and repeat the test using a new device.
 - Place the test device on a clean and level surface.
- Read the test result at **3-10 minutes**.
- If all lines are clearly visible at 3 minutes or sooner, then the test can be interpreted as negative and discarded. If any lines are not visible at 3 minutes, then the test should be re-read at 10 minutes.
- Alcohol indicator, when applicable, the result should be read at 3-5 minutes. Compare the colour of the reaction pad with the colour chart provided separately/on foil pouch to determine the relative oral fluid alcohol level.

Compound	ng/mL
Δ^9 -THC	40,000
Marijuana (THC 40)	
11-nor- Δ^9 -THC-9 COOH	40
Cannabinol	40,000
11-nor- Δ^8 -THC-9 COOH	32
Δ^8 -THC	20,000
Δ^9 -THC	32,000
Marijuana (THC 30)	
11-nor- Δ^9 -THC-9 COOH	30
Cannabinol	30,000
11-nor- Δ^8 -THC-9 COOH	25
Δ^8 -THC	15,000
Δ^9 -THC	24,000
Marijuana (THC 25)	
11-nor- Δ^9 -THC-9 COOH	25
Cannabinol	20,000
11-nor- Δ^8 -THC-9 COOH	25
Δ^8 -THC	10,000
Δ^9 -THC	17,000
Marijuana (THC 20)	
11-nor- Δ^9 -THC-9 COOH	20
Cannabinol	20,000
11-nor- Δ^8 -THC-9 COOH	15
Δ^8 -THC	10,000
Δ^9 -THC	17,000
Marijuana (THC 15)	
11-nor- Δ^9 -THC-9 COOH	15
Cannabinol	12,500
11-nor- Δ^8 -THC-9 COOH	12
Δ^8 -THC	6,000
Δ^9 -THC	10,000
Marijuana (THC 12)	
11-nor- Δ^9 -THC-9 COOH	12
Cannabinol	12,500
11-nor- Δ^8 -THC-9 COOH	12
Δ^8 -THC	6,000
Δ^9 -THC	10,000
Cocaine (COC 50)	
Benzoylecgone	50
Cocaine	50
Cocaethylene	75
Egonine	3,750
Egonine methyl ester	30,000
Cocaine (COC 40)	
Benzoylecgone	40
Cocaine	40
Cocaethylene	30
Egonine	3,000
Egonine methyl ester	25,000
Cocaine (COC 30)	
Benzoylecgone	30
Cocaine	30
Cocaethylene	45
Egonine	2,250
Egonine methyl ester	18,750

Compound	ng/mL
Cocaine (COC 20)	
Benzoylecgone	20
Cocaine	20
Cocaethylene	30
Egonine	1,500
Egonine methyl ester	12,500
Opiates/Morphine (OPI/MOP 50)	
Morphine	50
Codeine	30
Ethylmorphine	30
Hydromorphone	125
Hydrocodone	125
Diacetylmorphine(Heroin)	50
Oxycodone	30,000
Morphine 3- β -D-Glucuronide	50
Norcodeine	6,500
Normorphine	30,000
Nalorphine	12,500
Oxymorphone	30,000
Thebaine	2,500
Levorphanol	600
6-Monoacetylmorphine	30
Opiates/Morphine (OPI/MOP 40)	
Morphine	40
Codeine	25
Ethylmorphine	25
Hydromorphone	100
Hydrocodone	100
Diacetylmorphine (Heroin)	50
Oxycodone	25,000
Morphine 3- β -D-Glucuronide	50
Norcodeine	6,250
Normorphine	25,000
Nalorphine	10,000
Oxymorphone	25,000
Thebaine	2,000
Levorphanol	400
6-Monoacetylmorphine	25
Opiates/Morphine (OPI/MOP 25)	
Morphine	25
Codeine	20
Ethylmorphine	20
Hydromorphone	70
Hydrocodone	70
Levorphanol	300
Oxycodone	17,000
6-Monoacetylmorphine	20
Morphine 3- β -D-Glucuronide	40
Norcodeine	4,250
Normorphine	17,000
Nalorphine	7,000
Oxymorphone	17,000
Thebaine	1,500
Diacetylmorphine (Heroin)	40
Opiates/Morphine (OPI/MOP 20)	
Morphine	20

Compound	ng/mL
Codeine	15
Ethylmorphine	15
Hydromorphone	50
Hydrocodone	50
Levorphanol	200
Oxycodone	12,500
6-Monoacetylmorphine	15
Morphine 3- β -D-Glucuronide	25
Norcodeine	3,200
Normorphine	12,500
Nalorphine	5,000
Oxymorphone	12,500
Thebaine	1,000
Diacetylmorphine (Heroin)	25
Opiates/Morphine (OPI/MOP 10)	
Morphine	10
Codeine	12
Ethylmorphine	12
Hydromorphone	30
Hydrocodone	30
Levorphanol	150
Oxycodone	10,000
6-Monoacetylmorphine	12
Morphine 3- β -D-Glucuronide	20
Norcodeine	2,500
Normorphine	10,000
Nalorphine	3,000
Oxymorphone	10,000
Thebaine	800
Diacetylmorphine (Heroin)	20
Phencyclidine (PCP 10)	
4-Hydroxyphencyclidine	2,500
Phencyclidine	10
Oxycodone (OXY 20)	
Oxycodone	20
Oxymorphone	40
Levorphanol	10,000
Hydrocodone	1,500
Hydromorphone	10,000
Naloxone	5,000
Naltrexone	5,000
Oxycodone (OXY 40)	
Oxycodone	40
Oxymorphone	80
Levorphanol	20,000
Hydrocodone	3,000
Hydromorphone	20,000
Naloxone	10,000
Naltrexone	10,000
Oxycodone (OXY 50)	
Oxycodone	50
Oxymorphone	100
Levorphanol	25,000
Hydrocodone	3,750
Hydromorphone	25,000
Naloxone	12,500
Benzodiazepines (BZO 50)	
Alprazolam	25
a-hydroxyalprazolam	250
Bromazepam	130
Chlordiazepoxide	130
Clobazam	25
Clonazepam	65
Clorazepatedipotass	65
Delorazepam	130
Desalkylflurazepam	25
Diazepam	250
RS-Lorazepamglucuronide	25
Estazolam	1,000
Flunitrazepam	25
(+/-) Lorazepam	500
Midazolam	1,000
Nitrazepam	25
Norchlordiazepoxide	25
Nordiazepam	130
Oxazepam	50
Temazepam	25
Triazolam	500
Benzodiazepines (BZO 30)	
Alprazolam	15
a-hydroxyalprazolam	150
Bromazepam	75
Chlordiazepoxide	75
Clobazam	15
Clonazepam	40
Clorazepatedipotass	40
Delorazepam	75
Desalkylflurazepam	15
Diazepam	150
RS-Lorazepamglucuronide	15
Estazolam	600
Flunitrazepam	15
(+/-) Lorazepam	300
Midazolam	600
Nitrazepam	15
Norchlordiazepoxide	15
Nordiazepam	75
Oxazepam	30
Temazepam	15
Triazolam	300
Benzodiazepines (BZO 20)	
Alprazolam	10

Compound	ng/mL
a-hydroxyprazepam	100
Bromazepam	50
Chlordiazepoxide	50
Clobazam	10
Clonazepam	25
Clorazepatedipotass	25
Delorazepam	50
Desalkylflurazepam	10
Diazepam	100
RS-Lorazepamglucuronide	10
Estazolam	400
Flunitrazepam	10
(±) Lorazepam	200
Midazolam	400
Nitrazepam	10
Norchlordiazepoxide	10
Nordiazepam	50
Oxazepam	20
Temazepam	10
Triazolam	200
Benzodiazepines (BZO 10)	
Alprazolam	10
a-hydroxyprazepam	80
Bromazepam	40
Chlordiazepoxide	40
Clobazam	10
Clonazepam	20
Clorazepatedipotass	20
Delorazepam	40
Desalkylflurazepam	10
Diazepam	80
RS-Lorazepamglucuronide	10
Estazolam	300
Flunitrazepam	10
(±) Lorazepam	150
Midazolam	300
Nitrazepam	10
Norchlordiazepoxide	10
Nordiazepam	40
Oxazepam	10
Temazepam	10
Triazolam	150
Methadone (MTD 30)	
Methadone	30
Disopyramide	400
(+)-Chlorpheniramine	6,250
LAAM	200
Doxylamine	12,500
Nor-LAAM	12,500
Methadone (MTD 50)	
Methadone	50
Disopyramide	700
(+)-Chlorpheniramine	10,000
LAAM	350
Doxylamine	20,000
Nor-LAAM	20,000

Compound	ng/mL
Methylenedioxymethamphetamine (MDMA 50)	
(±) 3,4-Methylenedioxymethamphetamine HCl (MDMA)	50
(±) 3,4-Methylenedioxymethamphetamine HCl (MDA)	300
3,4-Methylenedioxymethamphetamine (MDE)	30
l-Methamphetamine	25,000
Methylenedioxymethamphetamine (MDMA 75)	
(±) 3,4-Methylenedioxymethamphetamine HCl (MDMA)	75
(±) 3,4-Methylenedioxymethamphetamine HCl (MDA)	450
3,4-Methylenedioxymethamphetamine (MDE)	45
l-Methamphetamine	37,500
Ketamine (KET 50)	
Ketamine	50
Tetrahydrozoline	20
Benzphetamine	1,250
d-Methamphetamine	1,250
(+)-Chlorpheniramine	1,250
l-Methamphetamine	2,500
Clonidine	5,000
Methoxyphenamine	625
Disopyramide	625
d-Norpropoxyphene	625
4-Hydroxypencyclidine	2,500
(+)-3,4-Methylenedioxymethamphetamine (MDMA)	5,000
Mephentermine	1,250
Phencyclidine	625
(1R, 2S) - (-)-Ephedrine	5,000
Promazine	1,250
EDDP	2,500
Promethazine	1,250
Levorphanol	2,500
Thioridazine	2,500
MDE	2,500
Meperidine	1,250
Dextromethorphan	75
Pentazocine	1,250
Ketamine (KET 100)	
Ketamine	100
Tetrahydrozoline	40
Benzphetamine	2,500
d-Methamphetamine	2,500
(+)-Chlorpheniramine	2,500
l-Methamphetamine	5,000
Clonidine	10,000
Methoxyphenamine	1,300
Disopyramide	1,300
d-Norpropoxyphene	1,300
4-Hydroxypencyclidine	5,000
(+)-3,4-Methylenedioxymethamphetamine (MDMA)	10,000
Mephentermine	2,500
Phencyclidine	1,300
(1R, 2S) - (-)-Ephedrine	10,000
Promazine	2,500
EDDP	5,000
Promethazine	2,500

Compound	ng/mL
Levorphanol	5,000
Thioridazine	5,000
MDE	5,000
Meperidine	2,500
Dextromethorphan	150
Pentazocine	2,500
Ketamine (KET 150)	
Ketamine	150
Tetrahydrozoline	60
Benzphetamine	3,750
d-Methamphetamine	3,750
(+)-Chlorpheniramine	3,750
l-Methamphetamine	7,500
Clonidine	15,000
Methoxyphenamine	2,000
Disopyramide	2,000
d-Norpropoxyphene	2,000
4-Hydroxypencyclidine	7,500
(+)-3,4-Methylenedioxymethamphetamine (MDMA)	15,000
Mephentermine	3,750
Phencyclidine	2,000
(1R, 2S) - (-)-Ephedrine	15,000
Promazine	3,750
EDDP	7,500
Promethazine	3,750
Levorphanol	7,500
Thioridazine	7,500
MDE	7,500
Meperidine	3,750
Dextromethorphan	225
Pentazocine	3,750
Barbiturates (BAR 50)	
Amobarbital	833
5,5-Diphenylhydantoin	1,333
Allobarbital	100
Barbital	1,333
Talbutal	33
Cyclopentobarbital	5,000
Pentobarbital	1,333
Alphenol	100
Aprobarbital	83
Butabarbital	33
Butalbital	1,333
Butethal	83
Phenobarbital	50
Secobarbital	50
Buprenorphine (BUP 10)	
Buprenorphine 3-D-Glucuronide	50
Norpurprenorphine 3-D-Glucuronide	100
Buprenorphine	10
Norpurprenorphine	50
Buprenorphine (BUP 5)	
Buprenorphine 3-D-Glucuronide	25
Norpurprenorphine 3-D-Glucuronide	50
Buprenorphine	5
Norpurprenorphine	25

Compound	ng/mL
Tramadol (TML 30)	
n-Desmethyl-cis-tramadol	60
d,l-O-Desmethylvenlafaxine	15,000
o-Desmethyl-cis-tramadol	3,000
Phencyclidine	30,000
Cis-tramadol	30
Procyclidine	30
6-Monoacetylmorphine (6-MAM 10)	
6-Monoacetylmorphine	10
Morphine	100,000
Fentanyl (FYL 50)	
Alfentanyl	1,500,000
Fenfluramine	125,000
Norfentanyl	10
Buspirone	37,500
Fentanyl	50
Sufentanyl	125,000
Fentanyl (FYL 20)	
Alfentanyl	600,000
Fenfluramine	50,000
Norfentanyl	8
Buspirone	37,500
Fentanyl	20
Sufentanyl	50,000
Fentanyl (FYL 10)	
Alfentanyl	300,000
Fenfluramine	25,000
Norfentanyl	5
Buspirone	18,750
Fentanyl	10
Sufentanyl	25,000
Carfentanyl (CFYL 50)	
Carfentanyl	50
Sufentanyl	300
Ramifentanil	500
Fentanyl	25
(±)cis-3-Methylfentanyl	50,000
Butylfentanyl	200
3,4-methylenedioxypyrovalerone (MDPV 300)	
3,4-methylenedioxypyrovalerone	300
alpha-Pyrrolidinovalerophenone (α-PVP 300)	
alpha-Pyrrolidinovalerophenone	300
Lysergic Acid Diethylamide (LSD 10)	
Lysergic Acid Diethylamide	10

Cross-Reactivity

A study was conducted to determine the cross-reactivity of the test with compounds spiked into drug-free oral fluid. The following compounds demonstrated no false positive results on the Rapid Response® Saliva Drug Test Stick when tested with at concentrations up to 100 µg/mL.

Acetaminophen	N-Acetylprocainamide
Aminopyrine	Ampicillin
Apomorphine	Atropine
Benzoic acid	d,l-Brompheniramine
Chloral-hydrate	Chlorothiazide

Chlorpromazine	Cholesterol
Cortisone	Creatinine
Dextromethorphan	Diflunisal
Diphenhydramine	β -Estradiol
Ethyl-p-aminobenzoate	Erythromycin
Furosemide	Hemoglobin
Hydrochlorothiazide	o-Hydroxyhippuric acid
Ibuprofen	d/l-Isoproterenol
Acetophenetidin	Acetylsalicylic acid
Amoxicillin	l-Ascorbic acid
Aspartame	Benzilic acid
Benzphetamine	Caffeine
Chloramphenicol	Sodium chloride
d/l-Chloropheniramine	Chloroquine
Clonidine	l-Cotinine
Deoxycorticosterone	Diclofenac
Digoxin	l- Ψ -Ephedrine
Estrone-3-sulfate	l(-)-Epinephrine
Fenoprofen	Gentisic acid
Hydralazine	Hydrocortisone
p-Hydroxytyramine	Iproniazid
Isoxsuprine	Labetalol
Meperidine	Methylphenidate
Naproxen	Nifedipine
d-Norpropoxyphene	d/l-Octopamine
Oxolinic acid	Papaverine
Pentazocine hydrochloride	Phenelzine
Phenylpropanolamine	Prednisone
d-Propoxyphene	Quinacrine
Quindine	Salicylic acid
Zomepirac	Toothpaste
Sulfamethazine	Tetracycline
Tetrahydrocortisone 3 (β -D-glucuronide)	Thiordiazine
Tolbutamide	Trifluoperazine
d/l-Tryptophan	Uric acid
Ketoprofen	Loperamide
Meprobamate	Nalidixic acid
Niacinamide	Norethindrone
Noscapine	Oxalic acid
Oxymetazoline	Penicillin-G
Perphenazine	Trans-2-phenylcyclopropylamine hydrochloride
Prednisolone	d/l-Propranolol
d-Pseudoephedrine	Quinine
Ranitidine	Serotonin
Sulindac	Tetrahydrocortisone 3-acetate
Thiamine	d/l-Tyrosine
Triamterene	Trimethoprim
Tyramine	Verapamil
Glucose	Mouthwash

Alcohol Performance Characteristics

Analytical Sensitivity

The detection limit on the Oral Fluid Alcohol Rapid Test is from 0.02% to 0.30% for approximate relative blood alcohol level. The cutoff level of the Oral Fluid Alcohol Rapid Test can vary based on local regulations and laws. Test results can be compared to reference levels with colour chart on the foil package.

Analytical Specificity

The Oral fluid Alcohol Rapid Test will react with methyl, ethyl and allyl alcohols.¹⁹

Interfering Substances

The following substances have been tested and may interfere with the Oral fluid Alcohol Rapid Test at the concentration listed when using samples other than oral fluid. The named substances do not normally appear in sufficient quantity in oral fluid to interfere with the test.

Substances	Concentration Level
Peroxidases	0.5 mg/dL
Hydrogen peroxide	10 ppm
Creatinine	200 mg/dL
Ascorbic acid	5 mg/dL
Tannic acid	10 mg/dL
Calcium Chloride	100 mg/dL
Mercaptans	10 mg/dL
NaCl	1,000 mg/dL
Oxalic acid	15 mg/dL
Uric Acid	15 mg/dL
L-dopa	10 mg/dL
L-methyldopa	10 mg/dL
Methampryzone	8 mg/dL
KCl	1,000 mg/dL
Sodium hypochlorite	80 ppm
Pyrogallol	15 mg/dL
Glucose	1,000 mg/dL
Tosylates	10 mg/dL
Urea	1,000 mg/dL
Bilirubin	4 mg/dL

Precision

Negative saliva and control solutions were tested two replicates each day for five consecutive days at three sites using three different lots of Oral fluid Alcohol Rapid Test. There is no significant difference within runs, between days, sites, lots and operators.

Bibliography

1. Moolchan, E., et al, "Saliva and Plasma Testing for Drugs of Abuse: Comparison of the Disposition and Pharmacological Effects of Cocaine", Addiction Research Center, IRP, NIDA, NIH, Baltimore, MD. As presented at the SOFT-TIAFT meeting October 1998.
2. Kim, I., et al, "Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration", ClinChem, 2002 Sept.; 48 (9), pp 1486-96.
3. Schramm, W. et al, "Drugs of Abuse in Saliva: A Review," J Anal

4. Tox, 1992 Jan-Feb; 16 (1), pp 1-9.
5. McCarron, MM, et al, "Detection of Phencyclidine Usage by Radioimmunoassay of Saliva," J Anal Tox. 1984 Sep-Oct; 8 (5), pp 197-201.
6. International Narcotics Control Board. Report of the International Narcotics Control Board for 2009[R]. New York: UN, 2010.
7. Lane JC, Tennison MB, Lawless ST, et al. Movement disorder after withdrawal of fentanyl infusion. J Pediatr. 1991, 119(4): 649-651.
8. Dominguez KD, Lomako DM, Katz RW, et al. Opioid withdraw in critically ill neonates. Ann Pharmacother. 2003, 37(4): 473-477.
9. European Monitoring Centre for Drugs and Drug Addiction. Annual Report 2009[R]. Lisbon: EMCDDA, 2010.
10. Stanley, Theodore H.; Egan, Talmage D.; Aken, Hugo Van (February 2008). "A Tribute to Dr. Paul A. J. Janssen: Entrepreneur Extraordinaire, Innovative Scientist, and Significant Contributor to Anesthesiology". Anesthesia & Analgesia. 106 (2): 451-462.
11. Vos, V. De (22 July 1978). "Immobilisation of free-ranging wild animals using a new drug". Veterinary Record. 103 (4): 64 - 68. Dominguez KD, Lomako DM, Katz RW, et al. Opioid withdraw in critically ill neonates. Ann Pharmacother. 2003, 37(4): 473-477.
12. Mounteney, Jane; Giraudon, Isabelle; Denissov, Gleb; Griffiths, Paul (July 2015). "Fentanyl: Are we missing the signs? Highly potent and on the rise in Europe". International Journal of Drug Policy. 26 (7): 626-631.
13. Glass, IB. The International Handbook of Addiction Behavior. Routledge Publishing, New York, NY. 1991, 216^{REF}.
14. Basel RC. Disposition of Toxic Drugs and Chemicals in Man. 6th Ed.
15. Waugh; et al. (2013). "Deaths Involving the Recreational Use of α -PVP (α -pyrrolidinopentiophenone)" (PDF). AAFS Proceedings. Abstract K16.
16. Glass, IB. The International Handbook of Addiction Behavior. Routledge Publishing, New York, NY. 1991, 216^{REF}.
17. Volpicelli, Joseph R., M.D., Ph.D.: Alcohol Dependence: Diagnosis, Clinical Aspects and Biopsychosocial Causes., Substance Abuse Library, University of Pennsylvania, 1997.
18. Jones, A.W.: Inter-and intra individual variations in the saliva/blood alcohol ratio during ethanol metabolism in man., Clin. Chem. 25, 1394-1398, 1979.
19. Basel RC. Disposition of Toxic Drugs and Chemicals in Man. 2nd Ed. Biomedical Publ., Davis, CA. 1982; 488
20. MaCall, L.E.L., Whiting, B., Moore, M.R. and Goldberg, A.: Correlation of ethanol concentrations in blood and saliva. Clin.Sci., 56, 283-286, 1979.

Glossary of Symbols

	Consult instructions for use		Tests per Kit		Unique device identifier
	Store between 35.6°F to 86°F (2-30°C)		Use by		Do Not Reuse
	Lot Number		For <i>in vitro</i> diagnostic use only		Catalogue #
	Manufacturer				

 BTNX Inc.
722 Rosebank Road,
Pickering, ON L1W 4B2
Canada
Technical Support: 1-888-339-9964

 BTNX INC.